
Computer Networks 44 (2004) 319–333

www.elsevier.com/locate/comnet
Traffic engineering for MPLS-based virtual private networks

Chun Tung Chou *

School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Northfields Avenue,

Wollongong, NSW 2522, Australia

Received 14 November 2002; received in revised form 21 August 2003; accepted 2 October 2003

Responsible Editor: J. Roberts
Abstract

This paper considers the traffic engineering of MPLS-based Virtual Private Networks (VPNs) with multiple classes

of service in an offline and centralised setting. We focus on two main issues. Firstly, we point out that the one label

switched path (LSP) per ingress–egress pair constraint can be relaxed for the case of MPLS-based VPNs due to the ease

in classifying flows on a per-VPN basis. This allows us to use LSP with finer granularity and thus better load balancing.

Secondly, we point out that the single objective traffic engineering formulations proposed in literature address only one

particular aspect of the traffic engineering problem. In this paper, we propose a multiobjective traffic engineering

problem which takes resource usage, link utilisation and number of LSPs into account. The proposed optimisation

problem is NP-complete and involves a large number of variables. We propose an heuristic to solve this problem.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

MPLS-based traffic engineering has been pro-
posed as a solution to overcome the congestion

problem of IP networks. The key idea is to use the

path pinning capability of MPLS to direct the

traffic flows so as to avoid network congestion and

hot spots. This paper considers the traffic engi-

neering of MPLS-based Virtual Private Networks

(VPNs) with multiple classes of service in a cen-

tralised setting.
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There are numerous design choices in designing

an MPLS-based traffic engineering scheme, see [1]

for a comprehensive discussion. For example, a
traffic engineering scheme can be centralised or

distributed. In a centralised scheme, global opti-

misation is used to compute the routes used by the

label switched paths (LSPs) based on the traffic

demand; these LSPs are then implemented in the

network to enable better load balancing, see

[21,22] for example. A distributed traffic engi-

neering scheme can be implemented in a number of
different ways. For example, in the scheme de-

scribed in [5], each ingress–egress node pair can

send traffic over a number of different paths and a

distributed optimisation algorithm is used to
ed.
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determine the proportion of traffic to be sent over

each possible paths.

In this paper, we propose a traffic engineering

algorithm for VPN in a centralised setting. In

particular, we will consider the effect of two design

choices, namely the granularity of LSP and the
performance objectives, in the traffic engineering

of MPLS-based VPNs.

In terms of LSP granularity, we can classify the

various MPLS-based traffic engineering schemes

into two categories. The first category consists of

all those schemes [9,11,12,21,22] which assume

that the traffic from an ingress–egress pair is to be

put on one LSP. The rationale behind this
assumption is that it will take considerable amount

of work to classify the packets at the edge routers

so that a flow is not routed over multiple paths. In

contrast, the schemes in the second category

[2,5,15] allows the traffic from an ingress–egress

pair to be transported over multiple LSPs. This

finer granularity has the potential to improve

network resource usage balance but a classification
scheme (typically based on hashing) will have to be

added to the edge routers.

The work that we mention in the last paragraph

assume that all the traffic flows are belonging to

one single network service provider (NSP). How-

ever, for the case where multiple VPNs are sharing

a single network, we argue in this paper that it is

possible to achieve fine grain load balancing
without incurring large overhead in packet classi-

fication. Furthermore, the implementation only

requires minor modification in the edge routers of

the BGP/MPLS VPN [18] scheme and does not

require hashing.

Another aspect of traffic engineering that we

will consider in this paper is the choice of opti-

misation criterion for traffic engineering. Two
common optimisation criteria have been proposed

in the literature. The first one is to minimise a

linear function of the link bandwidth usage [9].

From a NSP�s point of view, this optimisation

criterion minimises the network operation cost.

However, a drawback of this criterion is that it

may result in an uneven distribution of traffic in

the network where some links are over-utilised and
some links are under-utilised. This is demonstrated

in the example in Section 4 of this paper.
Another optimisation criterion that has been

proposed in literature is to minimise the maxi-

mum link utilisation [21]. This optimisation crite-

rion will produce an even traffic distribution and

will also maximise the room for traffic growth.

However, a drawback of this criterion is that the
network resource usage is not minimised. In

fact, the example in Section 4 shows that this

criterion may use 70% more network resources

than the case where network resources are mini-

mised.

In this paper, we propose a multiobjective for-

mulation of the traffic engineering problem which

takes into account resource usage (which can be
viewed as network operating cost), link utilisation

and the number of LSPs. The proposed multiob-

jective optimisation problem is NP-complete and

has a large number of binary integer variables. A

contribution of this paper is that we propose an

efficient heuristic to solve this problem.

1.1. Related work

Previous work on mixed-integer programming

(MIP) approach to MPLS-based traffic engineer-

ing [9,15,21,22] are focused on the case where all

traffic belongs to one NSP. The problem of VPN

traffic engineering had previously been considered

in [16] based on Poisson traffic model with 3the

goal of maximising a revenue objective that de-
pends on call blocking probability. However, our

work is based on a deterministic setting which

takes load balancing, resource usage and number

of LSPs into consideration.

The authors of [15] also uses a multiobjective

framework based on utilisation and resource

usage. However, our work has been developed

independently of theirs. Moreover, the emphases
of [15] are substantially different from ours.

Firstly, it does not consider traffic engineering in

the VPN setting which results in different optimi-

sation problem formulations. Secondly, it solves

the MIP problem using standard optimisation

software but we develop heuristics for our prob-

lems. Due to the NP-completeness of the problem,

the use of standard optimisation software limits
the size of the problem that can be solved in

practice.
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A few other traffic engineering optimisation

criteria can also be found in literature. For

example, [6] uses a 6-segment piecewise linear

monotonically increasing function of link utilisa-

tion which imitates the response time of an M/M/1

queue; [2] proposes a 2-segment piecewise linear
criterion which penalises links with an utilisation

above a pre-determined level. By using a piecewise

linear function, these two objective functions take

load balancing and resource usage into account

simultaneously. Due to the use of piecewise linear

objective function, the size of the optimisation

problems grows in proportion to the number of

segments being used. We take an alternative ap-
proach here where load balancing and resource

usage are considered respectively in two consecu-

tive linear programming problems. Moreover, the

heuristic proposed in Section 3.2 allows the

tradeoff between maximum link utilisation (i.e.

congestion level) and the number of LSPs (i.e.

management complexity). This feature is not

found in other existing traffic engineering solu-
tions.

1.2. Paper organisation

The rest of this paper is organised as follows.

Section 2 discusses the MPLS-based VPN traffic

engineering problem. This section discusses the

issues of LSP granularity and optimisation cri-
terion, and ends with a mixed integer multiob-

jective programming formulation of the VPN

traffic engineering problem. The proposed opti-

misation problem is NP-complete and involves a

large number of binary decision variables. In

Section 3, we propose a heuristic solution to

tackle this problem. Finally, an example is given

in Section 4 and the conclusions are presented in
Section 5.
2. Traffic engineering of MPLS-based VPN

In this section, we will formulate the traffic

engineering problem for MPLS-based VPN with

multiple classes of service. Section 2.1 gives an
overview of the VPN traffic engineering problem.

Section 2.2 addresses two issues: the granularity of
the LSP and the optimisation criterion. Based on

the discussion in Section 2.2, we present a multi-

objective formulation of the VPN traffic engi-

neering problem in Section 2.3.

2.1. Overview of the traffic engineering problem for

MPLS-based VPN

According to [1], Internet traffic engineering

is concerned with performance optimisation of

operational IP networks. A common problem that

is faced in today�s Internet, which is caused by the

use of destination based shortest path routing, is

that part of the network is over-utilised while
another part of the network is under-utilised. A

goal of traffic engineering is to correct this

imbalance in resource usage. This can be achieved

by using the route pinning property of MPLS

which allows the NSP to control the routes used

by the different LSPs. The route pinning property

of MPLS is also important in providing QoS in

the Internet. A fundamental requirement of being
able to provide QoS guarantee is to ensure that

there are sufficient resources for the QoS traffic.

By using MPLS and resource reservation, a NSP

can ensure that QoS traffic is given sufficient net-

work resources.

Since the main degree-of-freedom in MPLS

traffic engineering is the choice of routes for the

LSPs, a traffic engineering problem is often for-
mulated as an integer or mixed-integer optimisa-

tion problem whose aim is to find a suitable route

for each of the LSPs [9,21]. In the VPN traffic

engineering problem to be considered in this

paper, we assume this computation is performed

in an off-line centralised manner. Furthermore, we

assume that the NSP owns a physical network for

providing the VPN service. In order to simplify the
discussion here, we assume for the time being that

only one service class is offered by this NSP. We

also assume that each VPN customer provides the

NSP with a traffic demand matrix whose elements

are the bandwidth requirement between an in-

gress–egress pair of the VPN. In this context, the

goal of the VPN traffic engineering problem is to

find a route for each of these demands. However,
this description has overlooked two important

issues:
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1. The granularity of the LSPs to be used to imple-

ment the VPNs in the physical network.

2. The optimisation criterion to be used.

We will discuss these two issues further in the
next section.

2.2. Traffic engineering issues

2.2.1. Granularity of LSPs

In the traffic engineering overview in the pre-

vious section, we mention that the goal of the VPN

traffic engineering is to find a suitable path for
each demand of each VPN. (We continue to as-

sume a single service class in this section). An issue

is how these demands should be mapped to the

LSPs. On one extreme, we can aggregate all the

demands using the same ingress–egress pair from

all VPNs into an LSP. For a physical network with

N nodes, this will result in OðN 2Þ LSPs in the

network.
The idea of using only one LSP per ingress–

egress pair is implicit in the implementation of the

BGP/MPLS VPN scheme presented in the IETF

RFC 2547 [18]. The implementation makes use of

MPLS label stack where the bottom label is VPN

specific while the top label is VPN independent.

The core routers in the network only require the

top label for routing and are therefore completely
oblivious of the existence of the various VPNs.

This results in a scalable implementation where the

number of routes in the network can be made

independent of the number of VPNs.

However, sometimes it may not be possible to

put the aggregate of all the demands of an ingress–

egress pair in one LSP. This happens if the

aggregate demand is larger than the capacity of
any single link in the network. Also, an aggregate

with a large demand may be hard to load balance.

The mapping of the aggregate demand between

an ingress–egress pair onto a single LSP represents

the coarsest granularity that we can use. On the

other extreme, each of the demands of each VPN

can be mapped onto an individual LSP. This will

result in OðN 2 � #VPNsÞ LSPs or routes in the
network. This is clearly a non-scalable solution

and is precisely what the authors of RFC 2547 [18]

are trying to avoid. However, we see in the last
paragraph that there are occasions where it is

appropriate to use more than one LSP for the

aggregate demand between an ingress–egress pair.

We therefore believe that the granularity of a LSP

should not be fixed a priori but should be deter-

mined by the optimisation process. However, a
limit on the number of LSPs should be imposed in

order to avoid an unscalable number of routes.

Note that it requires only minor modification to

the edge routers in the BGP/MPLS scheme in

order to have multiple LSPs between an ingress–

egress pair. For example, if we are to set up two

LSPs between an ingress–egress pair, we can divide

the VPNs using this ingress–egress pair into two
groups where traffic from each group will be as-

signed to one particular LSP. The edge router will

again insert two labels into the packets. The bot-

tom label is VPN specific while the top label will

specify which one of the two LSPs will be used

according to the identity of the VPN. Note that

even if multiple LSPs are used, only the edge

routers have to know about the different VPNs but
the core routers remain unaware of the existence of

various VPNs.

We do not advocate the use of granularity that

is finer than per-VPN level because significant

workload, in the form of IP packet classification,

will be required to ensure that an IP flow is not

split across multiple LSPs. Thus, unlike many

load balancing schemes which use multiple LSPs,
packet classification here does not require the use

of hashing.

2.2.2. Optimisation criterion

A goal of traffic engineering is to optimise net-

work performance. Various optimisation criteria

have been proposed for this traffic engineering

optimisation problem. For example, [9] proposes a
criterion which minimises a weighted linear sum of

per-link bandwidth usage. However, such an

optimisation criterion has the same drawback as

minimising the resource usage, i.e. some links

being over-utilised. This will be illustrated in an

example in Section 4.

An alternative optimisation criterion suggested

in the literature is to minimise the maximum link
utilisation in the network [21]. The motivation for

introducing such criterion is that, in the case of
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fixed routing and linear traffic growth, the mini-

misation of the maximum link utilisation will

maximise the linear growth factor before re-rout-

ing will be required. However, such criterion has

two drawbacks. Firstly, it ignores the resource

usage as a factor. Secondly, it puts its emphasis on
the bottleneck link only. In fact, the example in

Section 4 shows that this criterion may use 70%

more network resources than the case where net-

work resources are minimised.

Note that both of these criteria, if used on their

own, address only one aspect of the traffic engi-

neering problem. In Section 2.3, we propose a

multiobjective programming optimisation problem
which uses both of these criteria. This results in a

solution which takes both network resource usage

and network traffic growth into account. We will

demonstrate in Section 4 that this multiobjective

programming formulation gives a near Pareto

optimal solution in both resource minimisation

and maximum link utilisation. Moreover, we will

show in Section 3.2 that this multiobjective frame-
work also provides a way to adjust the number of

LSPs to be used.

2.3. Mathematical formulation of the VPN traffic

engineering problem

2.3.1. Notation

This section defines the notation that will be
used. We assume that the physical network is given

by a capacitated directed graph G ¼ hV;Ei where
V and E are respectively the set of network nodes

and links. The elements in E are denoted by euv
where u; v 2V are the end points of the link. The

link euv 2 E has a capacity (bandwidth) given by

buv. The cost per unit bandwidth on euv will be

denoted by cuv.
We assume the NSP offers a number of different

service classes indexed by s 2S ¼ f1; 2; . . .g. The
total number of service classes is denoted by jSj.

We assume there are altogether M different

VPNs and they will be indexed by m. Each of these

VPNs will supply the NSP with jSj traffic demand

matrices, one for each traffic class. Let tm;sij be the

traffic demand of the mth VPN for service class s
between ingress–egress pair ði; jÞ where i; j 2V.

Note that each VPN may have different virtual
topologies and may not have demands for all the

different service classes. In this case, a zero value in

the demand matrix will be used.

Let i; j be two distinct nodes in V. For each

ingress–egress pair ði; jÞ and service class s, each
individual demand between i and j will be routed
over one of the potential paths in the set P s

ij ¼
fps;1ij ; ps;2ij ; . . . ; ps;kij ; . . .g. These paths are assumed to

be loop free. Note that the set of potential paths is

dependent on the ingress–egress pair and the ser-

vice class, and is independent of individual VPNs.

Let P denote the order of magnitude of the num-

ber of potential routes per ingress–egress pair per

service class. This quantity will be used later on to
quantify the number of variables in the optimisa-

tion problem.

In the optimisation problems to be formulated,

we will need to ensure that the total capacity

allocated to any physical link does not exceed its

physical capacity. We therefore require a way to

keep track of whether a particular potential path

uses a certain physical link. We define the follow-
ing indicator functions:

Iuv;s;k
ij ¼ 1 if euv 2 E is on the path ps;kij 2 P s

ij;
0 otherwise:

�
ð1Þ

Let luv denote the link utilisation of the physical

link euv 2 E.
Also let �RR denote a pre-specified upper limit on

the total number of LSPs or routes in the NSP�s
physical network.

Note that in the above definitions, and in the

rest of the paper, we have adopted the convention
of using i and j to index the ingress and egress of a

VPN demand. The end points of a physical link

will be indexed by u and v.

2.3.2. A multiobjective VPN traffic engineering

problem

The aim of this section is to formulate the

multiobjective VPN traffic engineering problem. In
this paper, we will make the assumption that the

physical network G has sufficient capacity to meet

the demands from all VPNs. With this assumption,

the traffic engineering problem becomes one of

choosing a suitable physical route for each VPN
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demand such that a certain criterion is optimised.

Define the decision variables

dm;s;k
ij ¼ 1 if demand tm;sij uses path ps;kij 2 P s

ij;
0 otherwise:

�
ð2Þ

In terms of these decision variables and the indi-

cator function defined in Eq. (1), the capacity

allocated on link euv 2 E for the VPN requests is

yuv ¼
X
s

X
m

X
i;j

tm;sij

X
k

Iuv;s;k
ij dm;s;k

ij

 !
: ð3Þ

In order to control the number of LSPs to be used,

we introduce an additional set of decision vari-

ables

gs;k
ij ¼

1 if the LSP between ingress–egress
pair ði; jÞ uses path ps;kij 2 P s

ij;
0 otherwise:

8<
:

The total number of LSPs or routes R that will be

used to implement these VPNs will be

R ¼
X
ij

X
s

X
k

gs;k
ij : ð4Þ

The multiobjective programming VPN traffic
engineering problem consists of two steps. In the

first step, we minimise the maximum link utilisa-

tion and is stated as follows:

Optimisation problem OPT1a

min l ð5Þ
subject to the constraints

yuv ¼
X
s

X
m

X
i;j

tm;sij

X
k

Iuv;s;k
ij dm;s;k

ij

 !

6 lbuv 8euv 2 E; ð6ÞX
k

dm;s;k
ij ¼ 1 8i; j 2V;

m ¼ 1; . . . ;M ; s ¼ 1; . . . ; jSj; ð7Þ
dm;s;k
ij 6 gs;k

ij 8i; j 2V;

m ¼ 1; . . . ;M ; s ¼ 1; . . . ; jSj; ð8ÞX
ij

X
s

X
k

gs;k
ij 6 �RR; ð9Þ

d‘;s;k
ij ; gs;k

ij 2 f0; 1g: ð10Þ
The constraint (7) ensures that only one path is

chosen for the demand tm;sij . The constraint (8) en-

forces the fact that if the LSP between ingress–

egress pair ði; jÞ does not use path ps;kij , no demands

in tm;sij can use this path. Finally, the inequality (9)

is a constraint on the number of routes.
Let l�OPT1a be the optimal value of l obtained in

the first optimisation step. The second optimisa-

tion step is to minimise the cost subject to the

constraint that all link utilisation remains under

l�OPT1a. The problem can be stated as follows:

Optimisation problem OPT1b

min
X
uv

cuvyuv ð11Þ

subject to the constraints

yuv ¼
X
s

X
m

X
i;j

tm;sij

X
k

Iuv;s;k
ij dm;s;k

ij

 !

6 l�OPT1abuv 8euv 2 E; ð12ÞX
k

dm;s;k
ij ¼ 1 8i; j 2V;

m ¼ 1; . . . ;M ; s ¼ 1; . . . ; jSj; ð13Þ
dm;s;k
ij 6 gs;k

ij 8i; j 2V;

m ¼ 1; . . . ;M ; s ¼ 1; . . . ; jSj; ð14ÞX
ij

X
s

X
k

gs;k
ij 6 �RR; ð15Þ

d‘;s;k
ij ; gs;k

ij 2 f0; 1g: ð16Þ

The constraints in the second optimisation step

are the same as those in the first step except for

constraint (12), where we enforce the condition

that the maximum utilisation of the network re-

mains at the same level as that given by the first
optimisation.

In order to understand why the second opti-

misation step is necessary, we need to realise that

the solution to OPT1a is generally not unique.

Without loss of generality, we will assume in the

following discussion that cuv ¼ 1. This means the

objective of OPT1b is to minimise the total re-

source usage. We now argue that there are many
solutions to OPT1a which give the same value of

l�OPT1a but they consume different level of network

resources. Consider the network depicted in Fig.

1(a) where all links are assumed to have the same
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Fig. 1. This figure is used in Section 2.3.2 to explain why the solution to minimising the maximum utilisation is generally not unique.
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capacity. The number next to a link in the figure

indicates the utilisation of that link. The maximum

link utilisation is therefore 0.8. If we re-route the

traffic currently on link 3–8 to the path 3–4–6–7–8,

the resulting link utilisations are given in Fig. 1(b).

We see that the routing patterns in both Fig. 1(a)
and (b) have the same maximum link utilisation,

but that in Fig. 1(b) has a higher resource usage.

2.3.3. Choice of paths

The basic idea behind using the set of potential

paths Ps
ij is that we will use this selection of paths

to enforce the QoS specifications for each service

class. For example, we may use P s
ij to set a limit on

the number of hops or propagation delay used by

each traffic class or some other constraints. These

paths will be generated before the optimisation

begins. The choice of paths can have an important

effect on the quality of the solution. For example,

if we provide only two possible choices of paths

between an ingress–egress pair and these two paths

have 1 and 10 hops respectively. In case the 1-hop
path is a bottleneck, the traffic between this in-

gress–egress pair will be forced onto the 10-hop

path, which is undesirable. This problem can be

avoided by providing a good selection of paths, for

example, all paths within a certain hop limit or all

paths whose propagation delay is below a certain

margin. Providing such choices is generally not a

problem in a well designed network. Our experi-
ence in using the proposed method (see Section 4)

shows that most of the traffic is routed along the

shortest path and all traffic is routed along a path

whose hop count is within 2 hops from the shortest

path. Similar conclusion also appeared in [15].

This points to the possibility of using an incre-

mentally larger set of paths (e.g. set of paths whose

hop count is within k hop from the shortest path,
for k ¼ 1; 2; . . .) in optimisation in order to ensure

that the choice of paths does not significantly affect

the quality of the solution.

Note an optimisation problem formulated in

terms of paths can be formulated equivalently in

terms of links [3] (see for example [9,15,21] for
traffic engineering problems formulated in terms of

links), the path formulation removes constraints

such as path hop count, which can be hard to

handle, from the optimisation problem.

2.3.4. Complexity of the problem

The optimisation problems OPT1a and OPT1b

formulated earlier belong to the class of mixed
linear integer programming (MILP). A special case

of the optimisation problem OPT1a is considered

in [21] where there is only 1 VPN and 1 service

class, and without constraints on the number of

LSPs. That problem is proved in [21] to be NP-

hard. Thus the problem OPT1a is also NP-hard.

The second optimisation problem OPT1b is NP-

complete [9].
In addition, these two optimisation problems

also involve a large number of binary decision

variables, which is of the order OðN 2 �M �
jSj � P Þ. We will provide an heuristic solution to

this optimisation problem in the following section.

2.3.5. Discussion

We assume in this paper that all demands will
be met. If this does not hold, the result to OPT1a

will return a value greater than 1. The next step

will be to continue with OPT1b to minimise the

resource usage. A third optimisation problem will

need to be solved in order to select a number of

VPNs to be admitted. The selection can be based

on choosing those VPNs which maximises the

revenue by admitting them. Note that there are a



326 C.T. Chou / Computer Networks 44 (2004) 319–333
number of ways of defining what a VPN consti-

tutes. For example, we can impose the condition

that a VPN will only be admitted if all of its

constituent service classes can be admitted. Alter-

natively, we can admit the VPNs one service class

at a time starting from the highest service class.
Note that the VPN admission control problem

differs significantly from the admission control for

a single LSP as the admissibility of a VPN requires

all its constituent virtual links be admitted at the

same time, not a proper subset of it. We have

formulated a few different VPN admission control

problems and they can be shown to be NP-hard by

their relation to the multidimensional knapsack
problem [4]. The solution method to these prob-

lems will be the topic of a future paper.
3. An heuristic solution

In this section, we present an heuristic solution

to the optimisation problems OPT1a and OPT1b
that we have formulated earlier. In order to re-

duce the complexity of the problem, we will per-

form the optimisation with one service class at a

time. Besides making the optimisation problem

more tractable, this allows us to balance the

amount of traffic of different service classes on

each link. For example, a NSP may want to limit

the proportion of real-time traffic on each link so
as to achieve reasonable delay and jitter responses

[14].

In Section 3.1, we give an heuristic solution to

OPT1a and OPT1b by first ignoring the con-

straints on the number of routes. We will then

show in Section 3.2 how the number of routes can

be indirectly adjusted in our multiobjective pro-

gramming framework.

3.1. Heuristic solution without constraints on the

number of routes

In this section, we present an heuristic solution

to the optimisation problems OPT1a and OPT1b

with the following simplifications:

1. We will perform the optimisation with one ser-

vice class at a time. This reduces the number of
binary decision variables per optimisation prob-

lem to the order OðN 2 �M � P Þ.
2. We ignore the constraints on the number of

routes for the time being. In other words, we

drop the constraints (8) and (9) for OPT1a,
and the constraints (14) and (15) for OPT1b.

Note: The removal of the constraint on the

number of routes means that we have lost control

over this requirement. However, we will demon-

strate how we can indirectly adjust the number of

paths in Section 3.2.

Even with the first simplification in place, the
number of binary decision variables that we have

to deal with is still large. In fact, the complexity of

the problem grows with the number of VPNs. We

will approach this problem in two steps. We will

show in Section 3.1.1 how we can obtain an

approximate solution using linear programming

(LP). In Section 3.1.2, we show how we can obtain

an integer solution using the approximation ob-
tained in Section 3.1.1.

3.1.1. A continuous approximation

The aim of this section is to formulate two LP

problems which give us an approximation of the

simplified version of OPT1a and OPT1b.

Let T s
ij be the aggregate demand from all VPNs

for ingress–egress pair ði; jÞ for service class s, i.e.

T s
ij ¼

XM
m¼1

tm;sij : ð17Þ

We further assume that T s
ij 6¼ 0 8s ¼ 1; . . . ;jSj;

i; j 2V.

Since we will be performing the optimisation on

a per-class basis, the index s should be treated as a

constant here. We have chosen to retain the index s
instead of dropping it so that we do not have to

redefine the notation.

We now define a set of continuous decision

variables in the range ½0; 1�. Define

xs;kij ¼ the fraction of aggregate demand

T s
ij to be routed over the path ps;ki;j :

Based on these decision variables and the indicator
function (1), the capacity being used on physical

link euv can be written as



X X
C.T. Chou / Computer Networks 44 (2004) 319–333 327
zsuv ¼
ij

T s
ij

k

xs;kij I
uv;s;k
ij : ð18Þ

Based on the simplifications that we have intro-

duced earlier, we define the following two LP

problems.

OPT2a

min l ð19Þ
subject to the constraints

zsuv ¼
X
ij

T s
ij

X
k

xs;kij I
uv;s;k
ij

6lbuv 8euv 2 E; ð20ÞX
k

xs;kij ¼ 1 8i; j 2V; ð21Þ

xs;kij 2 ½0; 1� 8i; j 2V; 8k: ð22Þ

Let l�OPT2a be the minimum value of l given by

OPT2a. The second LP is:

OPT2b

min
X
uv

cuvzsuv ð23Þ

subject to the constraints

zsuv ¼
X
ij

T s
ij

X
k

xs;kij I
uv;s;k
ij

6 l�OPT2abuv 8euv 2 E; ð24ÞX
k

xs;kij ¼ 1 8i; j 2V; ð25Þ

xs;kij 2 ½0; 1� 8i; j 2V; 8k: ð26Þ

The problem OPT2a is in fact the continuous

relaxation of the version of OPT1a with the con-

straint on the number of paths removed. l�OPT2a is

therefore a lower bound of l�OPT1a. However,

OPT2b is not the continuous relaxation of OPT1b

because l�OPT2a is used in OPT2b but not OPT1b.

Note that both of these LPs have OðN 2 � P Þ
variables, which is independent of the number of

VPNs.

3.1.2. Recovering the integer solution

We will show in this section, how we can re-

cover the integer solution from the continuous

solution to OPT2b. The solution to OPT2b tells us
how the aggregate demand T s
ij is split among the

potential paths fps;1ij ; ps;2ij ; . . . ; ps;kij ; . . .g. The sug-

gested heuristic is to distribute the VPN demands

tm;sij for m ¼ 1; . . . ;M among the potential routes

with non-zero traffic (i.e. those routes with non-

zero xs;kij values in the solution to OPT2b) such that
after the distribution process, the actual fraction of

aggregate demand in each potential route with

non-zero traffic matches as closely as possible to

that given by the continuous solution. Note that

this heuristic may not be able to recover the opti-

mal integer solution as paths with zero traffic in

the continuous solution may be used in the opti-

mal solution. Based on the problem description
earlier, we will define the problem in a general

setting.

Let ft1; . . . ; tDg be a set of non-zero demands to

be distributed over B (where BP 2) different LSPs.

The fraction of demands to be distributed over

the hth LSP (h ¼ 1; . . . ;B) is qh 2 ð0; 1Þ withPB
h¼1 qh ¼ 1. Furthermore, we define T ¼

PD
g¼1 tg

and the cost of hth LSP as

ch ¼
X

euv2hthLSP
cuv: ð27Þ

Note that B and qh�s are given by the solution of

the optimisation problem OPT2b.

In order to formulate this problem of sorting

demands into the LSPs, we define binary decision

variables

qgh ¼
1 if demand tg is to be put into bin h;
0 otherwise:

�
ð28Þ

This sorting problem can be stated as the following

optimisation problem:

OPT3

min
XB
h¼1

ch Tqh

					 �
XD
g¼1

tgqgh

					 ð29Þ

subject to the constraint

XB
h¼1

qgh ¼ 1 8g ¼ 1; . . . ;D; ð30Þ

qgh 2 f0; 1g: ð31Þ



Table 1

Performance of greedy heuristic for optimisation problem

OPT3

B D ¼ 100 D ¼ 1000

2 1.4 · 10�2 3.2 · 10�4
3 1.2 · 10�2 2.3 · 10�5
4 8.1 · 10�3 6.7 · 10�5
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Theorem 1. The optimisation problem OPT3 is NP-
complete.

Proof. See Appendix A. �

We propose an heuristic to solve this problem

based on the subset sum problem [17] which is a

special case of knapsack problemwhere the cost and

weight are equal. For the subset sumproblem, one is

given items of weight w1; . . . ;wn and a bin with size

W . The 0–1 decision variables are x1; . . . ; xn and the

goal is tomaximise
P

wixi such that
P

wixi 6W .The

subset sum problem is known to be NP-complete [8,
p. 247]. It can be solved exactly in pseudo-polyno-

mial time by dynamic programming [17]. Recent

progress on exact algorithms for the subset sum

problem can be found in [19]. There are a number of

heuristics for solving the subset sum problem (see

[7,13,17]) with an algorithm in [13] having the best

worst case relative error bound with respect to the

optimal. Our computation experience with applying
these algorithms to randomly generatedweights and

binsizes suggests that the followinggreedyalgorithm

for the subset sum problem works well.

Algorithm Greedy subset sum

1. Sort wg�s in descending order, i.e. w1P � � � PwD.

2. Initialisation: g ¼ 1.

3. If wg 6B, then
(a) Add wg to the bin,

(b) B B� wg.

Otherwise, end.

4. g g þ 1. Go to 3.

We propose the following heuristic to solve

OPT3:

Algorithm Heuristic for OPT3

1. Sort the demands in descending order

d1 P � � � P dD.
2. Sort the available bandwidth on each LSP in

ascending order q1 6 � � � 6 qB.

3. Let h ¼ 1 and D ¼ fd1; . . . ; dDg.
4. Use the greedy subset sum heuristic to solve the

subset sum problem with D as the items and
Tqh as bin size.

5. Remove demands that have been assigned from

D.
6. If h ¼ B, go to step 7, else increase h by 1 and go

to step 4.

7. Let Dr ¼ fd1; . . . ; dDrg denote the demands that

are yet to be placed.

(a) Compute ggh which is the objective function
value if the remaining demand dg 2 Dr is

placed in LSP h. Do this for all demands

in Dr and h ¼ 1; . . . ;B.
(b) Place demand dĝg in LSP ĥh if gĝgĥh is minimum.

(c) Remove dĝg from Dr. Goto 7 if Dr is non-

empty, otherwise end.

Example. A number of Monte Carlo experiments
have been carried out to test the performance of

Heuristic for OPT3. For each experiment, de-

mands are generated randomly using uniform

distribution in ½100; 2000�. The number of de-

mands D used is either 100 or 1000, and the

number of LSPs B is 2, 3 or 4. The relative pro-

portion of traffic in each LSP qh ðh ¼ 1; . . . ;BÞ is
randomly generated. Let q̂qh denote the proportion
of traffic assigned to LSP h by the proposed heur-

istic. We measure the performance by using the

error measure

max
h¼1;...;B

qh � q̂qh

qh
: ð32Þ

For each value of D and B, ten random sets of

data are generated. The maximum error over

the ten experiments for different values of D and

B are shown in Table 1. It can be seem from

the table that the algorithm performs very

well.

Remark 1. Note that the heuristic given in this
section may produce a solution which violates the

per-link capacity constraint, especially when the

utilisation is high. In this case, the excess capacity
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which causes the violation can be re-routed by for

example the widest-shortest path method [20]. If

this fails, an admission control problem will have

to be solved, see Section 2.3.5.
3.2. Controlling the number of LSPs

Section 3.1 presents an heuristic solution to

OPT1a and OPT1b by ignoring the constraint on

the number of LSPs or routes. Note that the

removal of this constraint means that we have lost

control over the number of LSPs to be used. The

aim of this section is to present an indirect method
to control the number of LSPs.

Recall from Section 3.1, the decision variables

for optimisation problems OPT2a and OPT2b are

xs;kij which is defined as the fraction of aggregate

demand between ingress–egress pair ði; jÞ of service
class s to be routed over the path ps;ki;j . It can be seen

from this definition that the number of LSPs being

used is given by the number of nonzero xs;kij �s in the
solution to OPT2b. In order to adjust the number

of LSPs being used, we introduce a multiplication

factor cP 1 and modify OPT2b to OPT2b0 as

follows:

OPT2b0

min
X
uv

cuvzsuv ð33Þ

subject to the constraints

zsuv 6 cl�buv 8euv 2 E; ð34ÞX
k

xs;kij ¼ 1 8i; j 2V; ð35Þ

xs;kij 2 ½0; 1� 8i; j 2V; 8k: ð36Þ

The optimisation problem OPT2b0 is identical
to OPT2b except that the multiplication factor c
appears in constraint (34). For c ¼ 1, OPT2b0 is

the same as OPT2b. This multiplication factor

c allows us to indirectly control the number of

LSPs being used. We first prove the following

result.

Theorem 2. Let xs;k�ij denote the optimal solution to
OPT2b0 and zs�uv the resulting bandwidth usage in
physical link euv. If the linear programming OPT2b0

is non-degenerate, then

Number of non-zero xs;k�ij

¼ number of links such that ‘‘zs�uv ¼ cl�buv’’

þ jVjðjVj � 1Þ: ð37Þ
Proof. See Appendix A. h

As the number of LSPs being used is given by

the number of non-zero xs;kij , the number of LSPs is

therefore given by Eq. (37). With the assumption
that the aggregate demand for each ingress–egress

pair is non-zero and the fact that at least one LSP

will be used between each ingress–egress pair, the

minimum possible number of LSP required per

traffic class is thus jVjðjVj � 1Þ, as given by the

fully meshed topology. Eq. (37) says that the

number of additional LSPs required, on top of a

set of fully meshed LSPs, is given by the number of
links such that zs;�uv ¼ cl�buv, in other words, the

number of additional LSPs required is given by the

number of links with maximum allowed utilisation

(i.e. bottleneck links) in the optimisation problem

OPT2b0. By increasing the value of c, the number

of bottleneck links decreases and so does the

number of LSPs.

Theorem 2 also shows the tradeoff between
achieving good load balancing (as indicated by

having a value of c close to unity) and the number

of LSPs being used. A designer can therefore use c
to adjust this tradeoff. This will be demonstrated in

Section 4.

Remark 2. The term jVjðjVj � 1Þ appears in

Theorem 2 because we assumed that the aggregate
demand for each ingress–egress pair is non-zero. If

this assumption does not hold, we should replace

this term by the number of non-zero aggregate

demands.
4. Example

In this section we demonstrate the effectiveness

of our algorithms using a network with 17 nodes

and 58 links.
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4.1. Quality of the heuristic

We apply our heuristic to a number of simu-

lated scenarios. In each simulation, M VPNs are

generated and each VPN demand is chosen
randomly from the range ½tmin; tmax�. The set of

potential paths is all paths within a hop limit

hmax. The results of these simulations are sum-

marised in Table 2. It shows the maximum link

utilisation lheuristic and resource usage uheuristic
given by our heuristic, as well as the optimal

objective function value of OPT2a and OPT2b,

which are denoted by, lOPT2a and uOPT2b, respec-
tively. Note that lOPT2a is a lower bound of

lheuristic. The table shows that sometimes uheuristic
and uOPT2b have equal value, this is due to the fact

that all split demands are routed over paths with

the same number of hops. We can see from the

table that the heuristic generally gives very accu-

rate solution.

If the set of potential paths is restricted to 6
hops or less, than there are about 11,000 paths.

For the case of unrestricted hop limit, the number

of potential paths is almost 50,000. If we are to

solve the integer programming problem for this

case, it will have over 5 million binary decision

variables if there are 100 VPNs. Thus, standard

MIP software is unlikely to be able to solve

OPT1a and OPT1b. However, our heuristic solu-
tion based on OPT2a and OPT2b requires solving

two LPs with 50,000 variables, which can be solved

in approximately 13 s by CPLEX [10], as indicated

in the last column of Table 2.
Table 2

This table compares the solutions obtained from the heuristic and co

M ½tmin; tmax� hmax lheuristic uheu

2 [500,6000] 6 0.4725 441

2 [500,8000] 6 0.5703 555

5 [100,3000] 6 0.5264 506

5 [500,3000] 6 0.6226 623

10 [500,2000] 6 0.9264 928

20 [100,1000] 6 0.7523 747

50 [100,400] 6 0.9139 932

50 [50,500] 6 0.9038 929

100 [50,200] unrestricted 0.90074 927
4.2. Comparing different optimisation objectives

The simulation in this section assumes there are

100 VPNs and the demand for these VPNs are

randomly generated. There are altogether 3 service
classes. The set of potential paths for Service Class

1 has 6 hops or less. Those for Service Class 2 have

9 hops or less, and there is no restriction on the

number of hops for Service Class 3.

We first consider the case where the con-

straint on the number of LSPs is removed. We will

compare the effect of the choice of optimisa-

tion criterion on the traffic distribution. Three
criteria are used. The first criterion is based on

minimising the total network resource usage alone.

The second criterion is based on minimising only

the maximum link utilisation. The last criterion is

the multiobjective programming formulation pro-

posed in this paper. For each choice of optimisa-

tion criterion, we solve the optimisation problem

first for Service Class 1, and then for Service Class
2 using the residual network, and finally for Ser-

vice Class 3. The results are summarised in Table

3. We see that if we minimise the resource usage

alone, it gives the smallest total resource usage

among the three criteria but some links (6 in this

case) are fully utilised. In contrary, minimising the

maximum utilisation gives the smallest maximum

link utilisation but results in a large resource
usage. However, the multiobjective formulation

gives a near Pareto optimal result.

We discuss in Section 2.3.2 (in the paragraph

above Fig. 1) that there are numerous solutions
ntinuous relaxation

ristic lOPT2a uOPT2b CPU time for

LPs (s)

0022 0.4504 4410022 1.54

3002 0.5607 5554165 1.52

2718 0.5236 5063423 1.46

7955 0.6165 6238369 1.67

8769 0.9245 9288799 1.90

8913 0.7517 7478913 1.63

5011 0.9137 9325039 1.60

1247 0.9036 9291280 1.28

8071 0.9007 9278066 12.83



Table 3

Results for the example in Section 4

Optimisation

criterion

Maximum

link utilisa-

tion

Network re-

source usage

(Gbps)

Mean path

hop counts

Number of aggregate demands using the shortest paths

(total # of aggregate demands¼ 816)

Minimum resource 1.000 84.1 2.2885 813

Minimax link util. 0.815 143.0 3.8818 211

Multiobjective 0.815 84.2 2.2932 803
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which minimise the maximum utilisation but with

different resource usage. Fig. 2 shows the distri-
bution of the link utilisation in the network for the

optimal solution of each the three optimisation

criteria we consider. Note the we have sorted in the

link utilisation before plotting Fig. 2. It can be

seen that if we optimise only the resource usage, a

number of links have utilisation close to one,

which means uneven link utilisation distribution.

For the case where we optimise only maximum
link utilisation, we see that a significant number of

links are having an utilisation which is close to the

maximum link utilisation of the network. This is

due to the fact that resource usage is not mini-

mised. If resource usage is taken into account in

addition to maximum link utilisation, as in the

proposed multiobjective framework, we see that

the number of links with an utilisation close to the
maximum has significantly reduced.

In the multiobjective formulation, the total

number of LSPs required for all three service
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Fig. 2. This graph shows the link utilisation resulted from using

the three optimisation criteria. The link utilisation have been

sorted in ascending order.
classes together is 854, or it requires 38 more LSPs

than if we use a fully meshed topology for each
service class. This means that most of the aggre-

gate demands are routed using one path. Of all

those aggregate demands that are split into mul-

tiple routes, all but four demands uses 2 routes and

the other four demands use 3 routes. Also, 25 of

the 38 split demands are routed along paths

with the same hop count, 12 are routed along

paths with one hop difference and 1 is routed along
paths with 2 hop difference. This property of

routing split demands over paths with small dif-

ference in path length is precisely what the second

optimisation problem is trying to achieve.

In terms of the path chosen by the multiobjec-

tive optimisation, 803 out of the 854 aggregate

demands are routed along the shortest paths or

split among multiple shortest paths. Also, it is
observed that all traffic is routed along a path

whose hop count is within 2 hops of the shortest

path. A similar observation also appeared in [15].

This explains why the resource usage in the mul-

tiobjective case is similar to that for minimising

resource usage alone. The mean hop count in the

second last column of Table 3 provides similar

evidence.
The above result is obtained by using the

method discussed in Section 3.1 where the con-

straints on the number of LSPs is being set aside.

We use the method presented in Section 3.2 to

study the effect of the multiplication factor c on the

number of LSPs required. The same value of c is

used for each traffic class. Fig. 3 shows the varia-

tion in the the total number of LSPs, maximum
link utilisation and resource usage as we vary c.
The figure clearly shows there is a tradeoff between

achieving good load balancing and minimising the

number of paths. However, the total resource

usage does not seem to vary much as c changes.
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Fig. 3. This graph shows how the number of LSPs, maximum

link utilisation and total network resource usage as the multi-

plication factor c (see OPT2b0 in Section 3.2) varies.
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This can be explained by the fact that the number

of split demands is small compared with the total

number of demands and the demands tend to split
between paths with similar length. This indicates

that the tradeoff in the VPN optimisation problem

is between the goodness in load balancing and the

number of LSPs being used.
5. Conclusions

In this paper we have proposed a multiobjective

formulation of the MPLS-based VPN traffic

engineering problem. This multiobjective formu-

lation takes resource usage, maximum link util-
isation and number of LSPs into account. We

demonstrate that this multiobjective formulation

overcomes the problems of single objective for-

mulations (e.g. minimising resource usage and

minimising maximum link utilisation) that have

appeared in the literature. The optimisation

problem that we have formulated is NP-complete

and involves a large number of binary decision
variables. We have proposed an heuristic solution,

which allows tractable solution.

Although we have formulated this multiobjec-

tive problem in terms of the MPLS-based VPN

traffic engineering problem, this multiobjective

framework is equally applicable to traffic engi-

neering problems in other settings.
Appendix A

Proof of Theorem 1. We will prove that for the

special case B ¼ 2. In this case, the decision vari-

ables are qg1 and qg2. By substituting qg2 ¼ 1� qg1
in the optimisation problem, OPT3 is equivalent to
min Tq1

					 �
XD
g¼1

tgqg1

					 with qg1 2 f0; 1g:

The solution to this optimisation is given by

the minimum of the following two optimisation

problems:

min Tq1 �
XD
g¼1

tgqg1 s:t: Tq1 P
XD
g¼1

tgqg1;

qg1 2 f0; 1g;

min�Tq1 þ
XD
g¼1

tgqg1 s:t: Tq1 6

XD
g¼1

tgqg1;

qg1 2 f0; 1g:

The first optimisation is equivalent to

max T
XD
g¼1

tgqg1 s:t: Tq1 P
XD
g¼1

tgqg1; qg1 2 f0; 1g:

By using the fact that T ¼
PD

g¼1 tg and

qg2 ¼ 1� qg1, the second problem is equivalent to

max T
XD
g¼1

tgqg2 s:t: Tq2 P
XD
g¼1

tgqg2; qg2 2 f0; 1g:

Both of these problems are subset sum problems (a

special case of knapsack problem where the cost

and weight of each item are equal) [17], which are

known to be NP-complete [8]. h

Proof of Theorem 2. By introducing slack vari-
ables rs

uv, OPT2b0 is equivalent to the following

formulation

min
X
uv

cuvzsuv ðA:1Þ

subject to the constraints

zsuv þ rs
uv ¼ cl�buv 8euv 2 E; ðA:2ÞX

k

xs;kij ¼ 1 8i; j 2V; ðA:3Þ

xs;kij P 0 8i; j 2V; 8k; ðA:4Þ
rs
uv P 0 8euv 2 E: ðA:5Þ

Let rs�
uv denote the optimal value of rs

uv. By non-

degeneracy, we have the number of non-zero
variables equals to the number of equality con-

straints. Hence
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Number of non-zero xs;k�ij

þ number of non-zero rs�
uv

¼ number of linksþ jVjðjVj � 1Þ:

The result then follows from the fact that

Number of links� number of non-zero rs�
uv

¼ number of zero rs�
uv

¼ number of links such that \zs�uv ¼ cl�buv":

�
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